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THE SECOND LARGEST PRIME DIVISOR 
OF AN ODD PERFECT NUMBER 

EXCEEDS TEN THOUSAND 

DOUGLAS E. IANNUCCI 

ABSTRACT. Let a(n) denote the sum of positive divisors of the natural number 
n. Such a number is said to be perfect if a(n) = 2n. It is well known that a 
number is even and perfect if and only if it has the form 2P-1 (2P - 1) where 
2P- 1 is prime. 

No odd perfect numbers are known, nor has any proof of their nonexistence 
ever been given. In the meantime, much work has been done in establishing 
conditions necessary for their existence. One class of necessary conditions 
would be lower bounds for the distinct prime divisors of an odd perfect number. 

For example, Cohen and Hagis have shown that the largest prime divisor 
of an odd perfect number must exceed 106, and Hagis showed that the second 
largest must exceed 103. In this paper, we improve the latter bound. In 
particular, we prove the statement in the title of this paper. 

1. INTRODUCTION 

For the natural number n, we denote the sum of its positive divisors by 

((n) = Ed. 
dln 

We define n to be perfect if u((n) = 2n. Euclid proved that if 2P - 1 is prime 
then 2P-1 (2P - 1) is perfect; Euler showed that every even perfect number has this 
very same form. It is easily seen that primality for p is necessary for the primality 
of 2P - 1. Primes of the form 2P - 1 are called Mersenne primes; hence there is 
a one-to-one correspondence between the even perfect numbers and the Mersenne 
primes. Exactly 37 Mersenne primes are known today. The question of whether 
they are infinite in number remains unanswered. 

On the other hand, no odd perfect numbers have ever been discovered, nor has 
any proof of their nonexistence ever been given. Therefore, it is not known whether 
odd perfect numbers exist. In the meantime, many necessary conditions for their 
existence have been found. For example, the highest known lower bound for an odd 
perfect number, due to Brent, Cohen, and teRiele [4], is now 10300. 

If a natural number n has the unique prime factorization r pa, we refer to 
p1 , p2 . ,k as the components of n. Cohen [6] showed that an odd perfect ai a 2 pk th 
number must have a component exceeding 1020. One possible class of theorems 
giving necessary conditions for the existence of odd perfect numbers is 
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Q(J). An odd perfect number has at least J components. 

Sylvester [21] gave the first theorem of this class in 1888 when he proved Q(5). 
Gradstein [9], Kiihnel [16], and Webber [22] each independently proved Q(6). Like- 
wise, Pomerance [18] and Robbins [20] independently proved Q(7). Hagis [10] 
subsequently proved Q(8), while Chein [5], in his doctoral dissertation, indepen- 
dently obtained the same result. It seems tde amount of effort needed to prove 
Q(J) increases exponentially with J. 

Pomerance [18] provides a lucid history of research on odd perfect numnbers up 
to 1974. He speaks, in particular, of another possible class of theorems for odd 
perfect numbers, given by 

'P(K, M). An odd perfect number is divisible by K distinct primes, each of which 
exceeds M. 

In Section 2 of this paper, the arithmetic function v-1 is discussed. Upon consid- 
ering the properties of v-1, one sees that proving Q(9) would entail far less work if 
one could first prove 1P(K, M) for as many K, and the largest M, as possible. The 
first known theorem of this class was given by Kanold [15] when he proved P(1, 60) 
be elementary methods. With the aid of computation, Hagis and McDaniel [12] 
proved P(1, 11200); the same authors [13] later proved P(1, 100110). Condict [8] 
and Brandstein [3] proved P(1, 300000) and P(1, 500000), respectively. Finally, 
Cohen and Hagis [7] have proved p(1, 106). We state this result as 

Lemma 1. If P is the largest prime divisor of an odd perfect number, then P > 
16. 

The first known theorem of the form P(2, M) was obtained by Pomerance [19] 
when he proved P(2, 138). With the aid of computation, Hagis [11] later proved 
P(2, i03). The purpose of this paper, then, is to prove P(2, i04), which we state as 

Theorem 1. If S is the second largest prime divisor of an odd perfect number, 
then S > 104. 

In obtaining the main result of this paper, the method of proof used by Hagis 
[11] was modified and then applied. As with most recent results of this kind, 
computation plays a huge role in the proof of Theorem 1. All computations and 
computer searches for this paper were conducted on an IBM-486 personal computer 
using a UBASIC software package. Verification of all primes was carried out using 
the APR primality test, due to Adleman, Pomerance, and Rumely [1]. 

2. SOME PRELIMINARIES 

Throughout this paper, positive (or nonnegative) integers are denoted by a,b,c,c, 
13, -y, as well as by h, i, j, k, 1, m, n, and by H,I, J, K, L, M, N. Primes, which are 
odd unless noted otherwise, are denoted by ir, p, q, r, s, t, and by P, Q, R, S, T. 

We say p klMif Pk m but k+1 t m. Next, vp(m) denotes the p-valuation of m; i.e., 
vp(m) = k if Pk Im. If p t a, we denote by op(a) the exponent to which a belongs, 
modulo p. 

We denote by (m(a) the cyclotomic polynomial, of order m, evaluated at a. 
Recalling the identity 

b1) b_I (Dd(b)I 
dInt 
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we see that 

(2) 0- W) = d| (P - 
dla+1 
d>1 

Hence, if N is an odd perfect number with unique prime factorization given by 
k1 piai, we have 

k 

(3) 2N =J d III (Pi)- 
i= djaj+1 

d>1 

From Theorems 94 and 95 in Nagell [17] we obtain 

Lemma 2. For primes p and q, qlbM(p) if and only if m = hqy, where h oq(p) 

and -y > 0. If ry > 0, then qII(m(p) 

An immediate consequence of (2) and Lemma 2 is 

'vq((Ih(P))+vq(a +1), if hla+l,h> 1, 
(4) vq (j7(pa)) vq (a + 1), if h = 1, 

10, otherwise. 

Another immediate consequence of Lemma 2 is 

Lemma 3. If q I(a (p) and r I (b (p), where a 74 b, q _ 1 (mod a), and r -1 (mod b), 
then q 74 r. 

Bang [2] proved the following: 

Lemma 4. If m > 3, then (Dm(P) has a prime divisor q with the property q _ I 
(mod m). 

Bang's actual result is stated in [18], and is stronger than Lemma 4. 
The next result, originally due to Euler, gives the "shape" of an odd perfect 

number, by which is meant the nature of its unique prime factorization. 

Lemma 5 (Euler's criterion for odd perfect numbers). An odd perfect number 
must have unique prime factorization given by 

4m+1 2a, 2a2 2ak 
7F Pi P2 ... Pk 

where r -1 (mod 4). 

In accordance with the terminology used in [18], we shall henceforth refer to iF 

as the special prime. 
Let 

07-- (n) =Ed-1 = 5(n) 
dln 

Thus n is perfect if and only if _1(in) = 2. Note that v-1 is multiplicative. Since 
1_,(pa) = 1 + l/p + i/p2 + ... + i/pa) it is clear that 

(5) 0-_(Pa) < 0-_,(Pb) < p_ if a < b. 
pi 

If p < q then q/(q-1) < (p + I)/p. Thus 

(6) -1 (qb) < C-1 (pa) for all a and b, if p < q. 
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3. ACCEPTABLE POSITIVE INTEGERS 

The proof of Theorem 1 will be given in Section 5, and will be by reductio ad 
absurdum. That is, we will assume the existence of an odd perfect number with 
exactly one prime divisor1 P > 104 and show that this assumption is untenable. 

Now consider the 45-element ordered set of primes X =f1093, 3851, 3221, 1423, 
4591, 9181, 6991, 1009, 5419, 127, 151, 19, if, 3169, 4933, 467, 2801, 571, 4733, 7, 
97, 331, 31, 61, 13, 3, 5, 37, 29, 811, 1621, 307, 17, 23, 1723, 41, 43, 47, 53, 3541, 
59, 67, 5113, 71, 73}. We order X from left to right so that 1093 precedes 3851, 
3851 precedes 3221, 3221 precedes 1423, and so forth. 

Similarly, let 

Xi = {613, 547, 1093}, X2 = 4603,179,3221}, X3 = f1381,101,1009}, 
X4 = {317,3169}, X5 = {7489,2467,4933}, X6 = {109,263,4733}, 
X7 = {2557,5113}. 

Again, we order Xi from left to right for each i, 1 < i < 7. Finally, let 

Y=XUX1 UX2U. UX7) 

and denote, for 1 < i < 7, the primes pi by 

P1 = 1093, P2 = 3221, p3 = 1009, p4 = 3169, 
P5 = 4933, P6 = 4733, p7 - 5113. 

Note that piE X, and p 0 X ifp c Xj\{pj}, for 1< i <7. We now give 

Definition 1. For p E Y and q < 104, let h -op(q). We say the positive integer 
k is (p, q)-acceptable if each of the following is true: 

1. k + 1 = hpY, where y > 0, 4 t h, and 2 t h if q 3 (mod4). 
2. If u precedes p in X (or pi in X when p E Xi), then u t oJ(q). 

3. oJ(qk) has no prime factor between 104 and 106. 
4. oJ(q k) has at most one prime factor greater than 106. 
5. If o-(qk) has exactly one prime factor R > 106, then there exists a prime T 

(with T = 2 considered only if Rf 1 (mod 4)) such that all prime factors of 
(T(R) are less than 104 and none precedes p in X (or p2 in X when p E Xi). 

Note that J?T(R) has a prime factor greater than 104 if T > 5000, according to 
Lemma 4. 4 

Let 13 be the smallest positive integer such that hp8 > 5000. It follows by 
Lemmata 4 and 3, by (2), and by conditions 3 or 4 of Definition 1 that k is not 
(p, q)-acceptable if k + 1 = hpy and ay > 13. Thus the set of (p, q)-acceptable integers 
is finite. 

A computer search was conducted and a list of all (p, q)-acceptable values was 
compiled. Exactly five were included which may or may not be (p, q)-acceptable; 
these correspond to the ordered triples (k, p, q) given by (1422, 1423, 5693), (1422, 
1423, 8539), (4732, 4733, 9467), (810, 811, 8111), and (810, 811, 9733). It was 
only determined in these cases that o(qk) = pM, where M has no prime divisor 
less than 109. As the magnitude of M lay beyond the realm of capability of the 
UBASIC software package, these five values of k where assumed (p, q)-acceptable 
for the indicated primes p and q. 

1Recall that P > 106 by Lemma 1. 
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The complete list of all (p, q)-acceptable values, along with the corresponding 
factorizations of o(qk), is too lengthy to be given here. Instead, a summary is 
presented in Table 1. 

For each p E Y, Table 1 gives three integers, each depending on p, which we call 
Ap, Bp, and Cp. They are defined as follows: 

1. Ap denotes the sum E vp(uf(qk)), taken over all k, q, such that k is even, (p, q)- 
acceptable, and oJ(qk) contains no prime factors greater than 104, or such that 
(k,p, q) is one of the five ordered triples discussed above. For each p E Y, 
and each q < 104, it was found that there exists at most one (p, q)-acceptable 
value k. ' 

2. Bp denotes the maximum value of vp(ou(qk)), taken over all k, q, such that k 
is odd and (p, q)-acceptable. 

3. Cp denotes the maximum value of vp(ou(qk)), taken over all k, q, such that k is 
even, (p, q)-acceptable, and QloJ(qk) where Q > 106, but not if (k,p, q) is one 
of the five ordered triples discussed above. For each p E Y, it was found that, 
among all such factorizations of oJ(qk), no prime Q > 106 appeared more than 
once. That is to say, if k1 is (p, qj)-acceptable and k2 is (p, q2)-acceptable, 
q, :4 q2, and if Q1 jo(q k,), Q2 Io(q k2 ), and Ql, Q2 > 106, then Qi #4 Q2. 

4. FEASIBLE PRIMES 

In the following definition, recall the set Y, X, Xl... . , X7, and the primes 
P1,... ,p7, as defined in Section 3. Also note that the prime r in the following 
definition may assume the value 2 under certain circumstances. 

TABLE 1. The values Ap, Bp, and Cp, as defined in section 3, for 
p E Y. 

p Ap Bp Cp p Ap Bp Cp p Ap Bp Cp 
613 5 1 0 317 0 1 0 37 6 1 1 
547 2 1 0 3169 1 1 '0 29 0 1 2 
1093 5 0 0 7489 2 0 0 811 2 1 0 
3851 1 1 0 2467 1 1 0 1621 1 0 0 
4603 2 0 0 4933 2 0 0 307 2 1 0 
179 0 1 0 467 0 1 0 17 0 2 0 
3221 1 0 0 2801 1 0 0 23 0 1 0 
1423 4 1 0 571 2 1 1 1723 1 0 0 
4591 0 1 0 109 14 1 0 41 1 2 1 
9181 2 0 0 263 0 1 0 43 9 2 1 
6991 1 0 0 4733 2 0 0 47 0 1 0 
1381 1 0 0 7 142 4 2 53 0 1 0 
101 0 1 1 97 9 2 0 3541 1 0 0 
1009 1 1 0 331 3 1 1 59 0 2 0 
5419 1 0 0 31 31 1 2 67 1 1 0 
127 13 1 0 61 13 1 1 2557 0 1 0 
151 13 1 1 13 47 2 1 5113 1 0 0 
19 83 2 1 3 63 7 1 71 0 0 0 
11 13 2 2 5 0 4 1 73 2 0 0 
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Definition 2. If p E Y we say the prime r is p-feasible if each of the following is 
true: 

1. r + 2 if p 3 (mod4) or if p = 613, 1381, 101, 317, 7489, 109, or 2557. 
2. If u precedes p in X (or, if p E Xi, u either precedes p in Xi or pi in X), then 

U t{r (P). 
3. 4Jr(p) has no prime factor between 104 and 106. 
4. 4Jr(p) has at most one prime factor greater than 106. 
5. If 4Ir(P) has exactly one prime factor R > 106, then there exists a prime T 

(with T = 2 considered only if R 1_ (mod 4) and p ? Xi\pi) such that all 
prime factors of 1T(R) are less than 104 and none precedes p in X (or, if 
p E X, none precedes either p in Xi or pi in X). 

6. ri 3 or p+ 3851. 

Now suppose r is a prime such that condition 2 of Definition 2 is satisfied. 
Suppose further that 4Ir(P) = KM, q < 104 if q1K, q > 104 if q1M, and M > 1. 
Then either r is not p-feasible, or 4br(P) = KQm, Q > 106. Let h = op(Q). As seen 
in [19], if K = 1, then p11Ibh(Q). For, in this case, we have 4Ir(P) = Qm, or 

1 +p(1 +p +p2 + ... +pr-2 Qm, 

and so pllQm - 1. This implies hlm, and thus Qh - lIQm - 1. Hence p11bh(Q), 
according to (1) and Lemma 2. We state this result as 

Lemma 6. If h = op(Q) and 4br(P) = Qm, then p I Ibh(Q). 

We will then assume that K > 1. Before proceeding, we state and prove an 
auxiliary result. 

Lemma 7. For m > 1, n > 1, and a > 1, we have 

(1+a+a2 ++an)mEnZm?+k -)k + a + a2 + *+ an)m 
= m 

k - k(modan+l). 

Proof. We use induction on m. The statement obviously holds when m 1. As- 
sume it holds for some m > 1. Recall the identity 

E m + i) (m + I + 1) 

Thus the statement also holds for m + 1, because 

(1+ a + a2 +...+ an)m+l 

( ) ( (m k ak) (modan+1) 

E ak (m + 1) (mod al+n) 
k=O j=0 

j (m +?k)ak (moda'+'). E 

Let H op(K) and write 

KH _1 + Clp + C2p2 - * + Cr_lpr- 1 (modpr), 
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where2 0 < ci <p for 1 < i < r-1. By Lemma 7 we have 

(r(p))H(l + p + p2 + ... + ?pr-)H 

r-I H~- 
- 

1+ S (H k k (mod pr). 

Thus, raising both sides of the equation 4D r(P)= KQm to the power H yields 

QmH + QmH k '-1 - ) S Ck + (+k 1p~ (modp, 
k=1 k=1 

so that for any J, 1 < J < r-1, we have 

(7) Q -1 _ (( ) CkQrnH ) pk (modpJ+1) 
k~~1 / 

Hence QmH =1 (mod p), so that h mH. Thus Qh 1 _ QmH _ 1, and it follows from 
(1) that vp(4bIh(Q)) < VP(QmH-1). 

Now suppose that vp(@h(Q)) > J+ 1 for some J, 1 < J < r -1. Then QnmH 1 
(modpj+1), so it follows from (7) that 

pJ+1Z((H + k 1) ck)pk 

Our arguments hold for any prime value of Q, even 2, provided that Q t K. There- 
fore we have proved 

Lemma 8. Suppose 'Dr(P) = KM, where (K, M) -1. Let H = op(K) and Ck 

[KH/pk] - p[KH/pk+1l] for 1 < k < r - 1. Furthermore, suppose that 

pJ+1 ((H? k-) _Ck) Pk for some J, 1 < J < r- 

Then the assumption that M is a power of a prime (say, M = Qm) leads to the 
conclusion that vp(4?h(Q)) < J if h = op(Q). 

The reader may note that the case of Lemma 8 when J = 1 appears in [11] as 
Lemma 2. 

For each p E Y, let us now define T(p) by the values given in Table 2, which can 
be found in Section 5. The reader will note that T(p) is prime for all p E Y. Upon 
consideration of the order in which the primes p occur in X and Xi, 1 < i < 7, 
it follows from Definition 2 and direct computation that if r is p-feasible, then 
r > T(P) 

If r > 5000 and p E Y, then it follows easily from Lemmata 2 and 4 that either 
condition 3 of Definition 2 is not satisfied, or 4 r (P)) M, where every prime factor 
of M exceeds 106. In the latter case, either r is not p-feasible or M = Qm, say, and 

vp (1)h (Q) 1= (where h = op(Q)) by Lemma 6. 
On the other hand, if T(p) < r < 5000, a computer search reveals that 4D r(P) 

has a prime divisor exceeding 104. Hence, in this case, we have 4'Ir (P) -KM, 
where q < 104 if q K and q > 104 if q1M, and where M > 1. Again, either r 

2Simply, for 1 < i < r - 1, put ci = [KH/pi] - p[KH/pi+l], where [x] denotes the integer 
part of x. In other words, the ci are merely the digits obtained from the base-p expansion of the 
integer KH, and are uniquely determined. 
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is not p-feasible, or M = Qm for some Q > 106. If we assume the latter, then 
either K 1 or K > 1. If K = 1, then vp(I?h(Q)) = 1 (where h = op(Q)) by 
Lemma 6. Otherwise, K > 1. As in the statement of Lemma 8, let H = op(K) 
and Ck = [KH/pk] - p[KH/pk+l] for 1 < k < r - 1. If there exists J such that 

1 < J < r- 1 and pJ+l t EJ 1 ((H+k 1) - Ck) pk, then Vp(1h(Q)) < J (where 
h = op(Q)) by Lemma 8. A computer search reveals that such a J always exists. 

We may now define an integer-valued function f(p, r) over all p E Y and r > 
T'(p). If r > 5000 we set f(p,r) = 1. Otherwise 'IQ(p) < r < 5000, and by our 
preceding remarks we may write 4,r(P) = KM, where q < 104 if qlK and q > 104 
if q M. In this case, set f(p, r) = 1 if K = 1. If K > 1, then, letting H = op(K) 
and Ck = [KH/pk] - p[KH/pk+l] for 1 < k < r - 1, we find the minimum value J, 

1 < J < r-1, such that pJ+l E ((H+k1) -Ck) pk; then we set f(p, r) = J. 

By our preceding remarks, the function f(p, r) is well defined. 
Finally, for all p E Y, we let 

2 (p) = max f (p, r). 
r>TJ(p) 

The values for w(p) may also be found in Table 2 in Section 5. 

5. PROOF OF THEOREM 1 

Without further explicit mention, we will let N denote an odd perfect number, 
all of whose prime divisors, save one, are less than 104. We let P denote the largest 
prime divisor of N and let a = vp(N). We use the notation 

(8) N=LPa, 

where p < 104 if pIL. It follows from Lemma 1 that P > 106. Thus 

(9) 2N = a(L)a(Pa). 

Our first objective is to show that if p E X, then p t N. To do this, we must also 
show that if p E Xi and pi = r (recall that ir is the special prime), then p t N. 

We shall be dealing with the primes in Y in the order in which they appear in 
Table 2. Suppose, then, that pIN, where either 

1. p E X but N is not divisible by u if u precedes p in X, or 
2. p E Xi\{pi}, pi = r, but N is not divisible by u if either u precedes Pi in X 

or u precedes p in Xi. 
We need some auxiliary results; for the first one given, recall the definitions of 

AP) BP, and Cp given at the end of Section 3. 

Lemma 9. Let A(p) = Ap + Bp + Cp. Then vp(u(L)) < A(p). 

Proof. Suppose qa lL and pl (qa). Let h = op(q). By (2), there exists k such 
that k + Ila + 1 and Plbk+l(q); hence k + 1 = hp, ay > 0, by Lemma 5. Thus 
j(qk) lj(qa) by (2). Note that conditions 2-5 of Definition 1 also hold for k; this 
follows from Lemma 5, (8), (9), and our assumption about p. Thus k is (p, q)- 
acceptable. But, recalling our remarks concerning the description of Ap (see the 
end of section 3), it follows that k is uniquely determined by p and q. Hence by 
(4), vp(a (qa)) = vp(cr(qk)). We may then write 

c c 

Vp (a E vp (a (qai)) Evp (a (qi)) 
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where ki denotes that unique (p, qj)-acceptable integer. Since 21j(qk) if k is odd 
(Lemma 5), then at most one of the ki is odd. Also, by our remarks regarding the 
description of Cp (see the end of Section 3), at most one of the ki can involve the 
divisibility of u(q ki) by a prime Q > 106 (as a(L) itself is divisible by at most one 
such prime). The result follows directly from the definitions of AP, Bp, and Cp. D 

Table 2 gives A(p) for all p E Y (recall the values TP(p) and w(p) from the previous 
section). 

By (8), Lemma 5, and our assumption about p, it follows that 4b,r(P) t 2N 
if any of conditions 1-5 of Definition 2 are not satisfied. Here, we show also that 
43(3851) t N if 3851 N. For, suppose otherwise. Denoting by Q the prime 1141081, 
we see that 13(3851) = 13Q (thus P = Q). A finite computer search reveals that 
41T(Q) is divisible by a prime exceeding 104 for all odd T (the search is finite 
because when T > 5000, this follows from Lemma 4). Since this is not the case 
when T = 2, we have, by (3), 12(Q) Ju(N); hence 1693IN, as 16931 2(Q). Note 
that Q would have to be the special prime. Thus, by (3), if 4b(1693)12N, then s is 
odd. Another finite computer search reveals that Ib?(1693) contains a prime factor, 
different from Q, which exceeds 104 for all odd s > 5; the fact that Q t Ib(1693) 
for odd s follows from Lemma 2 since oQ(1693) = 570540. Thus, from (3), 487IN 
since 4871 3(1693). Again, 487 -& ir, and another finite computer search shows 
that 4b,(487) contains a prime factor (different from Q) exceeding 104 for all odd 
s (note that oQ(487) 380360). Hence 4b(487) t N for all odd s, whereby (3) is 
contradicted. 

We have shown that 4Ir(p) t 2N if r is not p-feasible. Recalling Section 4, we see 
from (2) that if pa lN and t is the smallest prime divisor of a + 1, then t > T(p). 
We have thus proved 

TABLE 2. A(p), 4(p), and w(p) for p E Y. 

p A Iw p A P w p A w w 

613 6 11 1 317 1 5 1 37 8 13 1 
547 3 7 1 3169 2 7 1 29 3 11 1 
1093 5 11 1 7489 2 7 1 811 3 11 2 
3851 2 7 1 2467 2 7 1 1621 1 5 1 
4603 2 5 1 4933 2 7 1 307 3 7 1 
179 1 5 1 467 1 5 1 17 2 11 2 
3221 1 5 1 2801 1 5 1 23 1 11 4 
1423 5 11 1 571 4 11 1 1723 1 5 1 
4591 1 5 1 109 15 19 1 41 4 11 3 
9181 2 5 1 263 1 5 1 43 12 17 1 
6991 1 5 1 4733 2 7 1 47 1 7 2 
1381 1 5 1 7 148 157 2 53 1 7 2 
101 2 7 2 97 11 17 1 3541 1 5 1 
1009 2 7 1 331 5 11 1 59 2 11 2 
5419 1 5 1 31 34 41 1 67 2 7 1 
127 14 19 2 61 15 23 2 2557 1 5 1 
151 15 19 1 13 50 59 2 5113 1 5 1 
19 86 97 2 3 71 89 6 71 0 5 2 
11 17 29 3 5 5 17 4 73 2 7 2 
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Lemma 10. vp(N) > 'J(p) - 1. 

Recall that in Section 4 we remarked that 4b(p) has a prime divisor exceeding 
104 for all r, 'IQ(p) < r < 5000. By Lemma 4, if r > 5000, then ?Dr(p) has a 
prime divisor exceeding 104. It follows from Lemma 10 that if pa {N, then PIU(pa); 
therefore, j7(pa) KPm, where q < 104 if qIK. Let h = op(P) and suppose 
pbIIa(Pce). Let 1=[logp 5000]. It follows from Lemmata 3 and 4 and from (4) that 
b < Vp(4Ih(P)) + 1. Since we assume j(pa) = KPm, where P K, we have, by 
Lemma 8 and our definition of w(p), 

Lemma 11. vp(a(Pa)) < w(p) + [logp 5000]. 

We are finally able to proceed with the crux of the proof. 
Now suppose 613aII N and 1093 = 7r. Recalling (8) and (9), by Lemmata 9 and 

11 we have a < A(613) + w(613) + [log613 5000] = 6 + 1 + 1 -8, but by Lemma 10 
we have a > I(613) - = 11 - = 10. This contradiction proves that 613 t N if 
1093 = r. 

Suppose 547alIN and 1093 = ir. As in the preceding paragraph, and referring 
to Table 2, we have a < 3 + 1 + 1 = 5, but also a > 7-1 6. Thus 547 t N if 
1093 = ir. 

Suppose 1093al N. Similarly, we have a < 5+1+1 = 7, but also a > 11-I = 10. 
Thus 1093 tN. 

In the same fashion, the reader may now prove the following facts, in succession, 
by referring to Table 2 and Lemmata 9, 11, and 10: 

3851 t N, 4603 t N if 3221 = ir, 179 t N if 3221 =r, 3221 t N, 1423 { N, 
4591 N, 9181 t N, 6991 t N, 1381 t N if 1009 = ir, 101 N if 1009 = 7r, 1009 N, 
5419 N, 127 t N, 151 t N, 19 tN, N 1 t N, 317 t N if 3169 =r, 3169 t N, 7489 N 
if 4933 =- r, 2467 t N if 4933 = ir, 4933 t N, 467 t N, 2801 {N, 571 t N, 109 t N if 
4733 = ir, 263 t N if 4733 -r, 4733 t N, 7 t N, 97 { N, 331 { N, 31 { N, 61 { N, 
13 t N, 3 t N, 5 t N, 37 t N, 29 t N, 811 t N, 1621 { N, 307{ N, 17{ N, 23{ N, 
1723{ N, 41 t N, 43 t N, 47{ N, 53 t N, 3541 t N, 59 t N, 67 t N, 2557 t N if 
5113 =r, 5113N, 71t N, 73{N. 

Thus we have proved 

Lemma 12. If p E X, then p N. 

It is now a simple rmatter to complete the proof of Theorem 1. Fromu (8) and 
Lemma 12, it follows that N has the form 

k 

N -Pa]7Jqa%, 

where qij X, qi< 104. Thus by (5) and (6) 

u7_1(Nf) < lo 106 q <2. <106-1 i q1f2 
q<104 
qcX 

This contradiction shows that S > 104. Hence Theorem 1 is proved. 

6. SOME CONCLUDING REMARKS 

As mentioned in the Introduction, our bound on S, while perhaps in itself not 
of paramount interest, can nonetheless be quite useful for investigations concerning 
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the number of components an odd perfect number may have, or its magnitude. This 
paper was motivated by the author's desire to publish his dissertation result [14], 
the proof of which is greatly shortened if the improved bound on S is incorporated. 

I had twice remarked, in Sections 4 and 5, that a computer search revealed that 
for p E Y, 4'r (p) contains a prime factor Q > 104. Actually, this follows easily from 
Table 1 in [7] and a small number of calculations needed to cover the cases in Table 
2 where T(p) = 5. The values for 'P(p) were chosen with this in mind, as well as 
Lemmata 10 and 11. 

Finally, I would like to express mny gratitude to my dissertation advisor, Peter 
Hagis, Jr., for taking the time to read an earlier draft of this paper. The astute 
comments and timely suggestions he gave me greatly improved its quality. 
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